

<u>Jose Antonio Laz-Ruiz*</u>; M. Victoria Cano–Cortes*; Patricia Altea-Manzano*; Juan Diego Unciti-Broceta; Francisco Javier Lopez-Delgado; Juan Jose Diaz-Mochon; Rosario M. Sanchez-Martin

Objective: Development of a versatile and stable targeting nanocarrier based on monoclonal antibody conjugation for active delivery of a drug for monitoring specific cell response discriminating between cells depending on receptor expression levels

Introduction: Polymeric nanoparticles offer a great flexibility adapting its chemistry composition, size, stability, morphology and surface functionality. As a result, they are used in Biomedicine as drug delivery systems and diagnostic agents for a wide range of applications in diagnosis, therapy and theranostics [1] [2].

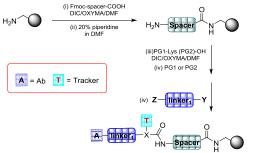
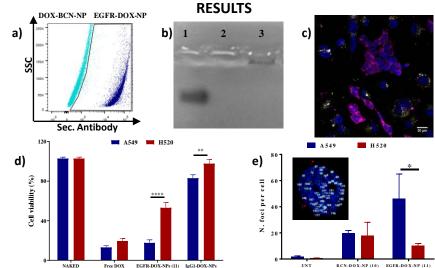



Figure 1. Scheme of the synthesis route for the functionalisation of the developed nanocarrier following Fmoc solid phase protocols.

Figure 2. Characterisation and evaluation of the developed nanocarrier. (a) Immunofluorescence of EGFR-DOX-NPs vs DOX-BCN-NPs; (b) Coomassie staining of electrophoresis gel of (1) antiEGFR, (2) coupling supernatant and (3) EGFR-DOX-NPs; (c) Selective nanofection of EGFR-DOX-NPs (yellow) in A549 cells (EGFR overexpression) in a coculture with H520 cells (EGFR low; stained with CellTracker (magenta)) by confocal microscopy; (d) Therapeutic effect of EGFR-DOX-NPs compared to free doxorubicin (500 nM) and IgG1-DOX-NPs; (e) Quantitative analysis of DNA damage by H2AX staining after incubation of EGFR-DOX-NPs compared to DOX-BCN-NPs. Student's T-test (* p value <0.0001)

Conclusions: An innovative and versatile approach for active targeted delivery based on the use of antibody decorated nanoparticles has been presented. **NPs targeting EGFR decorated with a drug for assessing drug efficacy were prepared and characterized.** *In vitro* validation was successfully achieved discriminating between two lung cancer cell lines with different levels of expression of this specific membrane receptor.

References:

Q. Guo, et al. Analytical Chemistry, 2019.
D. Rosenblum, et al. Nature Communications, 2018

Ackowledgements: This research was funded by MINECO, grant number BIO2016-80519 and the ISCIII, grant number DTS18/00121 and the Andalusian Regional Government, grant number PAIDI-TC-PVT-PSETC-2.0. NanoChemBio lab is member of the network NANOCARE (RED2018-102469-T). J.A.L.R. thanks to the Fundación Benéfica Anticáncer San Francisco Javier y Santa Cándida for PhD funding.