La Unidad de Microscopía e Imagen Molecular centra su actividad en la microscopía de epifluorescencia, la microscopía láser confocal y la microscopía TIRF, que permiten analizar la localización de moléculas de interés mediante técnicas de inmunofluorescencia o fusión a proteínas fluorescentes (CFP, GFP, YFP, mRFP, mCherry, etc.) tanto en células fijadas como vivas, lo que posibilita abordar entre otros, estudios de procesos celulares dinámicos. Asimismo, en la unidad se lleva a cabo la actividad de microdisección por captura láser, que facilita el aislamiento de poblaciones celulares específicas en secciones tisulares heterogéneas o de células individuales para su posterior estudio genómico o proteómico.

Microscopía de Epifluorescencia

La microscopía de epifluorescencia utiliza como fuente de iluminación la luz procedente de una lámpara que emite a distintas longitudes de onda, mediante un filtro se selecciona la longitud de onda de excitación adecuada dependiendo del fluorocromo presente en la muestra, de tal forma que la luz reflejada o fluorescencia emitida por el espécimen después de atravesar un sistema de filtros de emisión, llega al detector o cámara, obteniéndose finalmente la imagen digital en el ordenador.

La Unidad de Microscopía e Imagen Molecular de GENYO está dotada de diversos equipos de microscopía de epifluorescencia como: Nikon Eclipse 50i, Nikon Eclipse 80i, Nikon Eclipse 90i con cámara espectral y platina motorizada, Nikon Eclipse TE2000-U y Zeiss Axio Imager A.1, que permiten la adquisición de imágenes con técnicas de luz transmitida (campo claro, contraste de fases y contraste interferencial (DIC)), así como la adquisición de imágenes de fluorescencia a partir de muestras fijadas que presentan un sólo fluorocromo (marcaje simple) o varios (marcaje múltiple).

Microscopía Láser Confocal

La microscopía láser confocal, a diferencia de la microscopía de epifluorescencia, permite obtener imágenes de alta resolución, nitidez y contraste de un único plano focal de la muestra al eliminar la luz procedente de los planos fuera de foco. El microscopio láser confocal adquiere imágenes de muestras que reflejan la luz emitiendo fluorescencia, siendo en este caso la fuente de iluminación el láser, que excita punto por punto el espécimen y mediante un sistema de barrido, puede desplazarse por todo el plano focal. La fluorescencia emitida por el plano focal de la muestra es detectada por un fotomultiplicador y transformada en una señal electrónica que se digitaliza y almacena en un ordenador, visualizándose una imagen de elevada calidad a través del monitor.


 

El microscopio láser confocal permite estudiar muestras marcadas con varios fluorocromos, recogiendo las señales emitidas por éstos sin solapamiento mediante la detección a medida de los espectros de emisión de cada fluorocromo. Se genera de esta forma múltiples imágenes, una por cada fluorocromo detectado, que finalmente pueden superponerse en una sola imagen.

Una de las grandes ventajas de la microscopía confocal es la posibilidad de variar la posición del plano focal y poder capturar imágenes a distintas alturas en el eje Z de la muestra, obteniendo de esta manera un conjunto de secciones ópticas a las que es posible aplicar técnicas de reconstrucción que nos permiten visualizar la estructura tridimensional del espécimen.

En el campo de la microscopía láser confocal, GENYO dispone de tecnología de última generación como es el Microscopio Láser Confocal LSM 710 (Zeiss), dotado de cámara de incubación con control de CO2 y temperatura para abordar ensayos con muestras vivas.

Microscopía de Fluorescencia de Reflexión Interna Total (TIRF)

La microscopía de Fluorescencia de Reflexión Interna Total (TIRF), también conocida como “microscopía por onda evanescente”, se basa en la excitación selectiva de fluoróforos localizados en un ambiente acuoso o celular, muy cercanos a la zona basal o de interfase muestra/vidrio, sin llegar a excitar a los fluoróforos situados por encima de esta región. En la microscopía TIRF, la onda evanescente es generada por una luz de excitación que incide con un ángulo específico sobre la interfase entre el cubreobjetos y la muestra, que permite la reflexión interna total de la luz, produciendo un campo electromagnético en la zona de interfase de la misma frecuencia que la luz incidente, de un grosor aproximado de 100 nm, y cuya intensidad decae exponencialmente con la distancia a la interfase. Gracias a la microscopía TIRF se pueden obtener imágenes de elevado ratio señal/ruido en la zona de contacto muestra/vidrio, sin contribución de la fluorescencia procedente del resto del volumen de la muestra.

La microscopía TIRF ha permitido desarrollar numerosas aplicaciones en el campo de la biología celular como: la visualización específica de las regiones de contacto célula/vidrio o célula/sustrato, detección y espectroscopía de molécula única localizada en la zona de interfase muestra/vidrio, procesos de endocitosis y exocitosis, tráfico vesicular, distribución de proteínas en la membrana plasmática basal de las células, procesos de adhesión célula-célula, estudios dinámicos del citoesqueleto en células vivas, entre otros.

La microscopía TIRF presenta ciertas ventajas frente a otros tipos de técnicas, ya que permite obtener imágenes con mayor señal y menor ruido que la microscopía de epifluorescencia en las zonas de contacto entre la membrana plasmática basal de las células y el vidrio o sustrato sobre el que se adhieren, así como poder realizar una sección óptica más fina y en un periodo de tiempo más corto que la microscopía láser confocal, en una región muy específica como es la zona de interfase muestra/vidrio.

La Unidad de Microscopía e Imagen Molecular de GENYO está dotada de un Microscopio de Epifluorescencia Nikon Eclipse Ti-E con módulo TIRF, equipado con diferentes líneas de láser, un objetivo 100x de gran apertura numérica (1.49), una cámara EM-CCD monocroma de alta sensibilidad espectral y velocidad, así como de un sistema de incubación para realizar ensayos de adquisición de imágenes de fluorescencia a lo largo del tiempo con muestras vivas bajo condiciones controladas de CO2 y temperatura.

Microdisección por Captura Láser

La microdisección por captura láser permite el aislamiento de regiones de interés a partir de secciones tisulares criocongeladas o FFPE, poblaciones celulares o incluso células individuales específicas a partir de muestras fijadas o vivas, marcadas con técnicas de inmunohistoquímica, inmunofluorescencia o que expresan moléculas de interés fusionadas a proteínas fluorescentes, para posteriormente realizar su estudio genómico o proteómico.

La imposibilidad de aislar grupos puros de células representaba una limitación fundamental en el estudio de un tipo celular concreto, hasta que la aparición y evolución de las técnicas de microdisección, dio lugar a la microdisección por captura láser, una técnica eficaz, precisa y totalmente libre de contaminación ambiental, destinada a investigadores interesados en separar poblaciones celulares o células únicas específicas para su posterior análisis molecular.

La Unidad de Microscopía e Imagen Molecular cuenta con importante tecnología en el área de la microdisección por captura láser, como es el Microdisector Láser PALM Microbeam IV (Zeiss). Las secciones de tejido o células se observan con el microscopio óptico invertido Axio Observer Z.1 (Zeiss), que proporciona una alta calidad de imagen. A través del monitor del ordenador equipado con el software PALMRobo, se pueden localizar las áreas de tejido o células de interés de manera rápida y fácil. A continuación, el dibujo a mano alzada o mediante figuras predeterminadas permite seleccionar grupos celulares o células únicas, que serán cortados de forma automática y precisa por el láser UV (355 nm) y catapultados en la tapa adhesiva del tubo colector para su posterior estudio molecular. Además, el microdisector láser cuenta con un sistema “Cap Check” para comprobar la presencia de la muestra catapultada en el tubo colector, proporcionando de esta forma una mayor fiabilidad al sistema.